what is Dexedrine Dextroamphetamine 5mg?
Dexedrine Dextroamphetamine 5mg (American English) or dexamfetamine (Commonwealth English) is a potent central nervous system (CNS) stimulant and amphetamine enantiomer that is prescribed for the treatment of attention deficit hyperactivity disorder (ADHD) and narcolepsy. It is also used as an athletic performance and cognitive enhancer, and recreationally as an aphrodisiac and euphoriant. Dexedrine Dextroamphetamine 5mg is also widely used by military air forces as a ‘go-pill’ during fatigue-inducing mission profiles such as night-time bombing missions. Preparations containing Dexedrine Dextroamphetamine 5mg were also used in World War II as a treatment against fatigue.
The amphetamine molecule exists as two enantiomers (i.e., two different molecules that are mirror images of one another), levoamphetamine and dextroamphetamine. Dextroamphetamine is the more active dextrorotatory, or ‘right-handed’, enantiomer of the amphetamine molecule. Pharmaceutical dextroamphetamine sulfate is available as both a brand name and generic drug in a variety of dosage forms. Dexedrine Dextroamphetamine 5mg is sometimes prescribed as the inactive prodrug lisdexamfetamine dimesylate, which is converted into dextroamphetamine after absorption.
Dexedrine Dextroamphetamine 5mg, like other amphetamines, elicits its stimulating effects via several distinct actions: it inhibits or reverses the transporter proteins for the monoamine neurotransmitters (namely the serotonin, norepinephrine and dopamine transporters) either via trace amine-associated receptor 1 (TAAR1) or in a TAAR1 independent fashion when there are high cytosolic concentrations of the monoamine neurotransmitters and it releases these neurotransmitters from synaptic vesicles via vesicular monoamine transporter 2. It also shares many chemical and pharmacological properties with human trace amines, particularly phenethylamine and N-methylphenethylamine, the latter being an isomer of amphetamine produced within the human body.
Dexedrine Dextroamphetamine 5mg is used to treat attention deficit hyperactivity disorder (ADHD) and narcolepsy (a sleep disorder), and is sometimes prescribed off-label for its past medical indications, such as depression and obesity. Long-term amphetamine exposure at sufficiently high doses in some animal species is known to produce abnormal dopamine system development or nerve damage, but, in humans with ADHD, pharmaceutical amphetamines appear to improve brain development and nerve growth. Reviews of magnetic resonance imaging (MRI) studies suggest that long-term treatment with amphetamine decreases abnormalities in brain structure and function found in subjects with ADHD, and improves function in several parts of the brain, such as the right caudate nucleus of the basal ganglia.
Reviews of clinical stimulant research have established the safety and effectiveness of long-term amphetamine use for ADHD. Controlled trials spanning two years have demonstrated treatment effectiveness and safety. One review highlighted a nine-month randomized controlled trial in children with ADHD that found an average increase of 4.5 IQ points, continued increases in attention, and continued decreases in disruptive behaviors and hyperactivity.
Current models of ADHD suggest that it is associated with functional impairments in some of the brain’s neurotransmitter systems;these functional impairments involve impaired dopamine neurotransmission in the mesocorticolimbic projection and norepinephrineneurotransmission in the locus coeruleus and prefrontal cortex. Psychostimulants like methylphenidate and amphetamine are effective in treating ADHD because they increase neurotransmitter activity in these systems. Approximately 80% of those who use these stimulants see improvements in ADHD symptoms. Children with ADHD who use stimulant medications generally have better relationships with peers and family members, perform better in school, are less distractible and impulsive, and have longer attention spans. The Cochrane Collaboration’s reviews on the treatment of ADHD in children, adolescents, and adults with pharmaceutical amphetamines stated that while these drugs improve short-term symptoms, they have higher discontinuation rates than non-stimulant medications due to their adverse side effects. A Cochrane Collaboration review on the treatment of ADHD in children with tic disorders such as Tourette syndrome indicated that stimulants in general do not make ticsworse, but high doses of dextroamphetamine could exacerbate tics in some individuals.
Performance-enhancing
In 2015, a systematic review and a meta-analysis of high quality clinical trials found that, when used at low (therapeutic) doses, amphetamine produces modest yet unambiguous improvements in cognition, including working memory, long-term episodic memory, inhibitory control, and some aspects of attention, in normal healthy adults; the cognition-enhancing effects of amphetamine are known to occur through its indirect activation of both dopamine receptor D1 and adrenoceptor α2 in the prefrontal cortex. A systematic review from 2014 found that low doses of amphetamine also improve memory consolidation, in turn leading to improved recall of information. Therapeutic doses of amphetamine also enhance cortical network efficiency, an effect which mediates improvements in working memory in all individuals. Amphetamine and other ADHD stimulants also improve task saliency(motivation to perform a task) and increase arousal (wakefulness), in turn promoting goal-directed behavior. Stimulants such as amphetamine can improve performance on difficult and boring tasks and are used by some students as a study and test-taking aid. Based upon studies of self-reported illicit stimulant use, 5–35% of college students use diverted ADHD stimulants, which are primarily used for performance enhancement rather than as recreational drugs. However, high amphetamine doses that are above the therapeutic range can interfere with working memory and other aspects of cognitive control.
Amphetamine is used by some athletes for its psychological and athletic performance-enhancing effects, such as increased endurance and alertness; however, non-medical amphetamine use is prohibited at sporting events that are regulated by collegiate, national, and international anti-doping agencies. In healthy people at oral therapeutic doses, amphetamine has been shown to increase muscle strength, acceleration, athletic performance in anaerobic conditions, and endurance (i.e., it delays the onset of fatigue), while improving reaction time. Amphetamine improves endurance and reaction time primarily through reuptake inhibition and effluxion of dopamine in the central nervous system. Amphetamine and other dopaminergic drugs also increase power output at fixed levels of perceived exertion by overriding a “safety switch” that allows the core temperature limitto increase in order to access a reserve capacity that is normally off-limits. At therapeutic doses, the adverse effects of amphetamine do not impede athletic performance; however, at much higher doses, amphetamine can induce effects that severely impair performance, such as rapid muscle breakdown and elevated body temperature.
Recreational
Dexedrine Dextroamphetamine 5mg is also used recreationally as a euphoriant and aphrodisiac, and like other amphetamines is used as a club drug for its energetic and euphoric high. Often taken in higher doses than those prescribed by doctors, Dexedrine Dextroamphetamine 5mg is considered to have a high potential for misuse in a recreational manner, with users reporting feelings of elevated mood, increased alertness and energy after taking the drug. Adverse effects of recreational use include, but are not limited to, blurred vision, increase in body temperature, increased heart rate (tachycardia), impaired speech, and, usually only in very high doses, feelings of paranoia and psychotic episodes. Dexedrine capsules can be opened and the contents crushed and snorted, or dissolved in water and injected. Injection into the bloodstream can be dangerous because insoluble fillers within the tablets can block small blood vessels. Abusing amphetamines over time can induce severe drug dependence.
Reviews
There are no reviews yet.